NASA TECHNICAL MEMORANDUM NASA TM X-58060 May 1971 ### EXTREME-DENSITY PROFILES FOR SKYLAB COMMAND MODULE ENTRY CONSIDERATIONS NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS ### EXTREME-DENSITY PROFILES FOR SKYLAB COMMAND MODULE ENTRY CONSIDERATIONS David E. Pitts Manned Spacecraft Center Houston, Texas ### ABSTRACT Two model atmospheres are presented: 30 density envelopes for 30°N latitude for January and July for use in entry studies of the Skylab command module entry. The two model atmosphere studies are to be used in calculation of entry corridor lines, calculation of entry monitoring system tolerances, and calculation of guidance and navigation system dispersion angles. ### EXTREME-DENSITY PROFILES FOR SKYLAB COMMAND ### MODULE ENTRY CONSIDERATIONS By David E. Pitts Manned Spacecraft Center ### **SUMMARY** Extreme-density dispersions (30) and extreme-density scale heights at an altitude of 90 kilometers, at 30° N latitude for January and July are used to construct model atmospheres (including pressure, temperature, density, speed of sound, viscosity, and eight other variables for altitudes extending from 0 to 120 kilometers). These extreme models, while at 30° N latitude, are inclusive of the 60° N latitude models and, therefore, are recommended for Skylab command module entry studies. ### INTRODUCTION Since both drag and heating rates of the entering Skylab command module are dependent upon atmospheric density, the success of the entry phase of a mission depends to a great extent on the density predicted at entry altitudes. Density is usually predicted by means of a model atmosphere in which the density-altitude schedule is specified in tabular form. Such a model atmosphere represents mean conditions. For example, the "U.S. Standard Atmosphere, 1962" (ref. 1) describes annual conditions at 45° N latitude. The structure of the lowest 120 kilometers of the earth atmosphere varies primarily as a function of altitude, season, latitude, and time of day, with the size of the variation being from largest to smallest, respectively. Thus, many important variations are ignored when the mean model atmosphere is used. The "U.S. Standard Atmosphere Supplements, 1966" (ref. 2) provides the most realistic and up-to-date picture of density deviations from the "U.S. Standard Atmosphere, 1962" (ref. 1). These data include the mean and 95th percentile envelopes of density for annual conditions at 15° N latitude and for January and July at 30° N, 45° N, 60° N, and 75° N latitude. Nominal Skylab command module entry occurs at latitudes less than or equal to 50° N latitude. Unfortunately, the model atmospheres for 60° N latitude and 70° N latitude, which would suffice for the purpose of calculating entry corridor lines, monitoring system tolerances, and calculating guidance and navigation system dispersion angles, do not extend high enough in altitude. Since the majority of the entry corridor will occur in the $\pm 30^\circ$ range, the 3σ density envelopes have been used to develop 30° N latitude January and July model atmospheres (tables I and II). These models also have greater density variability at 80 to 120 kilometers than the 60° N latitude January and July models which are given in reference 2. It is recommended that these two extreme-density models be used for calculation of extreme entry conditions for the Skylab command module. ### CRITICAL DENSITY GRADIENTS The Apollo command module starts sensing the atmosphere at a 0.05g acceleration (near 90 kilometers). The density at this altitude tends to remain constant (near-isopycnic level); however, the vertical density gradients in this region change greatly due to seasonal and day-to-day changes. The density gradient at 90 kilometers is important because the entry monitoring system determines the entry angle of the space-craft from the deceleration rate after 0.05g. The magnitude of this vertical density gradient is expressed by the density scale height $$H_{\rho} \equiv \frac{-1}{\frac{1}{\rho}} \frac{\partial \rho}{\partial z}$$ where ρ is density and z is geometric altitude. The quantity \mathbf{H}_{ρ} (given in units of distance) indicates the vertical distance over which density decreases by a factor of e. Thus, a large scale height indicates an atmosphere decaying very slowly, and a small scale height indicates an atmosphere decaying very rapidly with height. Day-to-day changes in the thermal structure of the atmosphere can result in larger vertical density gradients than those found in the mean monthly atmospheres as described in reference 2. Available density observations are not sufficiently numerous or accurate for estimating frequency distributions of vertical density gradients at various levels. However, rough estimates for the maximum and minimum vertical density gradients that are likely to occur at 90 kilometers can be made in a hydrostatically consistent atmosphere, provided limits are placed on the temperature and the vertical temperature gradient $\partial T/\partial z$. The relationship between these quantities is that of a nomogram from reference 3. A realistic maximum density gradient (minimum density scale height) based on a temperature of 160° K and $\partial T/\partial z = +10^{\circ}$ K/km was calculated to be 3.699 kilometers, while 4.56 kilometers will occur more often $(\partial T/\partial z = 0)$. Thus the 3 σ summer model (table I) has a density scale height of 3.62 kilometers. The smallest density gradient (maximum density scale height) that can occur is 8.632 kilometers based on a temperature of 230° K and a superadiabatic temperature gradient, although 6.659 kilometers will occur at times ($\partial T/\partial z = 0$). Therefore 8.17 kilometers was chosen for the 3σ winter model (table II). ### CALCULATION OF THE EXTREME MODELS The two model atmospheres in tables I and II were calculated from density versus altitude information supplied in reference 2. These data consist of the 95-percent envelopes for each month, January and July, which were used as the basis for the 3σ models by adding one additional standard deviation. Next, the density data were integrated downward from 120 kilometers by using the hydrostatic equation as applied to falling sphere density data as described in reference 4. This procedure gives the necessary and sufficient temperature profiles for the models. Finally, the computer program described in reference 5 was used to calculate the two extreme model atmospheres with 13 variables as a function of altitude. Tables I and II each contain separate but equivalent models in separate scientific and engineering units. ### CONCLUDING REMARKS The two model atmospheres present 3 σ density envelopes for 30 $^{\circ}$ N latitude for January and 30 $^{\circ}$ N latitude for July. The models are recommended for use in atmospheric entry studies for the Skylab command module, because these models are inclusive of the 60 $^{\circ}$ N latitude for January and July model atmospheres as presented in the "U.S. Standard Atmosphere Supplements, 1966." Manned Spacecraft Center National Aeronautics and Space Administration Houston, Texas, May 6, 1971 160-75-03-00-72 ### REFERENCES - 1. COESA: U.S. Standard Atmosphere, 1962. U.S. Government Printing Office, Dec. 1962. - 2. COESA: U.S. Standard Atmosphere Supplements, 1966. U.S. Government Printing Office, 1967. - 3. Cole, Allen E.; and Kantor, Arthur J.: Horizontal and Vertical Distributions of Atmospheric Density, Up to 90 km. Air Force Surveys in Geophysics No. 157, June 1964. - 4. Pitts, David E.; and Carter, Patricia C.: High-Altitude Atmospheric Measurements for the Reentries of Gemini 6 and Gemini 7. NASA TM X-58003, Nov. 1966. - 5. Pitts, David E.: A Computer Program for Calculating Model Planetary Atmospheres, NASA TN D-4292, 1968. # TABLE I. - MODEL ATMOSPHERE FOR EARTH --- 30 SUMMER DATA ## (a) Scientific units | SURFACE
BASE OF | CE PRESS | | | | | | | | | | | | | |--------------------|---|----------------|--------------|------------|-------------------------------|---------------
--|------------|---|--|--|--|---------------------| | 2 | OSC F PO | . 11 | 1013.50 MB | OS
ON | SURFACE TEMP | TEMPERATURE | 304.60 | | SURFACE | SURFACE DENSITY | # 6 | 1.16-03 GM/CC | CC | | RADIO | S OF EAR | | 378,00 (KM) | B 6 | PERCENT NITRO | EN | 78.080 | | PERCENT CO | NT CO2 |
 11 11 | 030 |)
1 ₁ | | PERCENT | NT HYDROGEN | | 0000 | 96 | PERCENT HELIUM
PERCENT SO2 | | 000. | | PERCE | 1 | = 2 | 000 | | | | TEMPE | EMPERATURE AND | ID MOLECULAR | | WEIGHT DISTRIBUTION | • | and the state of t | | as at mergy party and an analysis of the second | THE REAL PROPERTY AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON PER | | man and a an | | | | AT | 1.00 | ×: | TEMP | TEMPERATURES | 293.65 | | | MOLECULAR | WEIGHT= | 28.96600 | 00 | | | | A | 00.00 | GEOP KM | TEMP | ERAIURE= | 266, | - 1 | AND WOL | MOLECULAR | MEIGHT | 20.966 | 0.0 | | | | }-
C « | 17,00 | < × | TEMP | EMPERATURE: | 220. | × × × × × | | MOLECULAR | WEIGHT | 28 • 96600 | 000 | | | | AT | 21.00 | × | TEMP | ERATURE= | 220, | | AND MOL | ECULAR | | 28,966 | 00 | | | | AT | 43°00 | ¥ | TEMP | ERATURE= | 271, | | AND MOL | ECULAR | WEIGHT= | 28,966 | 00 | | | |

 | 9 | ኢ ን | TEMP | ERATURE= | 271.00 | | AND MOL | | WE TOHAL |
28,96600 | 0 0 | | | | - I- | 80.00 | لار ک | TENT. | FRATURE | 172. | | | | WEIGHT: | | 000 | | | | - F | 85.00 | : × | T W | ERATURE= | 150. | | AND MOL | | WEIGHT | | 00 | | | | 7 | 88.00 | . | TEMP | ERATURE= | 140 | | | - | WEIGHT | | 00 | | | | AT | 90°00 | ¥ | TEMP | ERATURE= | 155. | | | - 1 | WEIGHT | - 1 | 00 | | | | AT | 100-00 | GEOM KM | TEMP | TEMPERATURE=
TFMPFRATURE= | 176,00 | 00
X X | AND MOL | MOLECULAR
MOLECULAR | WEIGHT: | 28,75000 | 000 | | | | 7.4 | 105.00 | : 🔀 | LEMP | TEMPERATURE= | 226,00 | | | | WEIGHT= | 27.780 | go | | | | - j | 110.00 | × | TEMP | ERATURE= | 270° | | | | WEIGHT= | 27,390 | 00 | | | | - s | 115.00 | | TEMP | TEMPERATURE= | 323, | | AND MOL | MOLECULAR | WEIGHT | 27.05000 | 88 | | | CALCULATED | ATED QUA | QUANTITIES | İ | | | - | | | | | | | | | | | | | | | | | MEDAN | | | NE AN | | | | HE I GHT | (EMP | PRESSURE | DENSITY | | MOLECULAR | DENS
SCALF | NUMBER | TRES | VIS | PRES | PARTICLE
VELOCITY | COLL | COLUMNAR | | (KM) | (K) | (MB) | (GM/CC) | (M/SEC) | 1 | (KM) | (PER CC) | (M) | (E+2) | (KM) | (M/SEC) | (PER SEC) | | | 0 | 30% . 4 | 1.01+03 | | 350 | 29.0 | 13.12 | 2,41+19 | 7.05-08 | 1.95 | 8,92 | 472. | 6.70+09 | 000.0 | |) क्युं | 293.7 | 9.04+02 | | | į | ĺ | | 7.62-08 | 1.89 | | | 6,08+09 | 1,115+0 | | 03 i | 288.2 | 8,04+02 | | 340 | 29.0 | | 2.02+19 | 8.40-08 | 1.85 | | - | 5,46+09 | 2,136+02 | | 2 a | 262.7 | 7°13+07 | 1 | | 0.00 | 1 | | 3.29-08 | 1.7A | 8,60 | #50° | 4.69+09 | 3.896+0 | | r vo | K17.00 | 5.58402 | | | 29,0 | | | 1.14-07 | 1.75 | 7.96 | | 3,90+09 | 0+649*4 | | 0 | 266.2 | 4.91+02 | | | 29.0 | | 1 | 1.27-07 | 1.71 | 7.81 | i | 3.47+09 | 5,327+0 | | ~ | 259°2 | 4.31+02 | - ! | | 29.0 | - 1 | 1.21+19 | 1.41-07 | 1.67 | • | | 3,09+09 | 5.938+0 | | 30 G | N 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | 3.29+02 | 4.068104 | 314. | 200 | 9.06 | | 1.75-07 | 1,50 | | | 2,42+09 | 6.982+02 | | 10 | 238.1 | 2.86+02 | | | 29.0 | 8.81 | 1 | 1.95-07 | 1.54 | | | 2,14+09 | 7.424+0 | | 12 | 235.5 | 2°48402 | - 1 | 1 | 29.0 | 7,50 | 7,62+18 | Qυ | .53 | 6,92 | 415 | 1,86+09 | 7.816+0 | | N} P
~4 • | 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° | 7°7*+CV | | 909 | 200 | 7 * 4 C | 5.00+10 | K. 50 10 1 | 1001 | 40.04 | | 1,02409 | 0.10840 | | 100 | 227.0 | 3010001 | - | | C | 100 | 3.04.40 | • | 7.00 | | | NO.01 | 2 | | - | | The Co | | 303 | 20.0 | 7.24 | 5.07+18 | 3.35-07 | 070 | 6.70 | ρ
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Con | 1.22+09 | 8.719+0 | TABLE I. - MODEL ATMOSPHERE FOR EARTH -- 30 SUMMER DATA - Continued (a) Scientific units - Continued | | | • | | OF SOUND | WEIGHT | SCALE | DENSITY | PATH | COSITY | SCALE | VELOCITY | FREG | MASS | |------|---|--------------------|--------------------|----------|--------|--------------|---------------|----------|-------------------------|--|---------------------------------|--------------------|----------| | (KM) | 3 | (%) | (32/M9) | (M/SEC) | | | (PER CC) | E | (E÷S) | X
X | (M/SEC) | (PER SEC) | | | 16 | 222.7 | 1.18+02 | 1.84-04 | 299. | 29.0 | 7.08 | 3.83+18 | 4.43-07 | 1.46 | 6.55 | 403 | 9,10+08 | 9.144+02 | | | 220 • 1 | 8.66+01 | 1.37-04 | 297. | 29.0 | 6.50 | 2.85+18 | 5.96-07 | † † †
† † †
1 • † | 9 | 401. | 6.73+08 | 9.464+02 | | | 220°0 | 7.42+01 | 1.17-04 | 297 | 29.0 | 6.48 | 2.00+18 | 6.95-07 | 1000 | 6.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1. | 401 | 5,77+08 | 9.591+02 | | | 20.00 | 5.45+01 | 6.63-05 | 297 | 29.0 | 9,49 | 1.79+18 | 9.47-07 | 1.44 | 6.48 | 401. | 4,24+08 | 9.793+02 | | | 68
68
68
68
68
68 | 4.67+01 | 7.33-05 | 299. | 29.0 | 6.15 | 1,52+18 | 1.11-06 | 1.
2.
2. | 6.55 | 403° | 3,62+08 | 9.872+02 | | | 226.95 | 3.45+01 | 5,31-05 | 302 | 29.0 | 6.26 | 1.10+18 | 1.54-06 | 1.48 | 6,69 | 401 | 2,64+08 | 9,997+02 | | - | 229.2 | 2,98+01 | 4.53-05 | 304. | 29.0 | 6.33 | 9.41+17 | 1.80-06 | 1.49 | 6.76 | 400 | | 1.005+03 | | | 231.55 | 2.57+01 | 3.87-05 | 305 | 29.0 | 6.39 | 8.04+17 | 2-11-06 | 1.51 | 6.83 | 411. | 1.95+08 | 1.012403 | | | 236.2 | 1.92+01 | 2.84-05 | 308 | 29.0 | 6.52 | 5.90+17 | 2.88-06 | 1.53 | 6.97 | 415 | 1.44+08 | 1,015+03 | | i | 23845 | 1,07+01 | 2.44-05 | 310. | 29.0 | 6.59 | 5.07+17 | 3.35-06 | 1.55 | 7.04 | 418 | 1,25+08 | 1,018+03 | | | 9 -
0 | 1.45+01 | 2.09-05
1.80-05 | 311. | 29.0 | 6.66 | 3.75+17 | 4.53-06 | 1.56 | 7.19 | 422. | 9,31+07 | 1.022+03 | | | 245.5 | 1.10+01 | 1.56-05 | 314. | 29.0 | 6.79 | 3.23+17 | 5.25-06 | 1.59 | 7.26 | 424. | 8,07+07 | 1.024+03 | | İ | 247eB | 9.56+00 | 1.34-05 | 316 | 29.0 | 96,00 | 2.79+17 | 5.08-06 | 1.60 | 7.53 | . to 0. | / 00+07
6 00+07 | 1.025+03 | | | 25001 | 7.29+00 | 1,16-05 | 317. | 0.60 | 26.9 | 2.09+17 | 8.12-06 | 1,63 | 7.47 | 4400 | 2 0 | 1.028+03 | | | 254.8 | 6.38+00 | 6.73-06 | 320. | 29.0 | 7.06 | 1.82+17 | 9-36-06 | 1.64 | 7.54 | 432 | ı o | 1.029+03 | | | 25701 | 5.59+00 | 7,58-06 | 321. | 29.0 | 7.12 | 1.58+17 | 1.08-05 | 1.66 | 7.61 | 433 | | 1.029+03 | | | 259.4 | 4 . 91 + 60 | 6.59-06 | 323 | 0.00 | 7.26 | 1.37+1/ | 1.24-05 | 1.697 | Po - / | 400 | 3.07+07 | 1.031+03 | | į | 264.0 | 3.79+00 | 5.00-06 | 326. | 29.0 | 7.32 | 1.04+17 | 1.63-05 | 1.70 | 7.83 | 439 | ··· | 1.031+03 | | . | 266.4 | 3.34+00 | 4.37-06 | 327. | 29.0 | 7.39 | 9.08+16 | 1.87-05 | 1.71 | 7.90 | 441. | 2,36+07 | 1,032+03 | | | 2768.7 | 2.94+00
2.50+00 | 3,82-06 | 329 | 29.0 | 7.52 | 7.94+16 | 2.45-05 | 1.73 | 9.04 | ,
,
,
,
,
,
, | 1,82+07 | 1.033+03 | | 3 | 271.0 | 2.29+00 | 2.95-06 | 330. | 29.0 | 20.00 | 6.13+16 | 2.77-05 | 1°.1 | \$0.0
8 | 445. | 1.61+07 | 1.033+03 | | | 27.50 | 1,79+00 | 20.00 | , c | 29.0 | 0.00 | 4.78+16 | 3,55-05 | 1 2 | 9.0 | 445 | 1.25+07 | 1.033+03 | | | 271.0 | 1.58+00 | 2,03-06 | | 29.0 | 8.05 | 4.22+16 | 4.02-05 | 1.74 | 8,05 | 445 | 1,11+07 | 1.034+03 | | | 271.0 | 1.40+00 | 1.79-06 | | 29.0 | 8.05 | 3.73+16 | 4.55.05 | 1.74 | 8
0
0
0
0
0 | | 9,78+06 | 1.034+03 | | | 266.7 | 1.09+00 | 1,41-06 | | 29.0 | 8.27 | 2.93+16 | 5.79-05 | 1.73 | 7.99 | 443. | 7,65+06 | 1,034+03 | | | 267.5 | 9.59-01 | 1.25-06 | : | 29.0 | 8.24 | 2.60+16 | 7.38-05 | 1.72 | 7.92 | 442 | 5.98+06 | 1.034+03 | | ! | 265.2 | 7.45-01 | 9,79-07 | , . | 29.0 | 8.17 | 2.04+16 | 8.34-05 | 1.71 | 7.89 | * O++ | , CV | 1.034+03 | | | 264.0 | 6.57-01 | 8.66-07 | | 29.0 | 9.1
1.0 | 1.80+16 | 9.43-05 | 1.70 | 7.86 | 439° | 4,66+06 | 1.035+03 | | | 261.7 | 5.08-01 | 6.77-07 | }. | 29.0 | 8.07 | 1.41+16 | 1.21-04 | 1.68 | 7.79 | 437. | 3,62+06 | 1.035+03 | | | 260.5 | 4.47-01 | 5.98-07 | 324. | 29.0 | 9.0 | 1.24+16 | 1.37-04 | 1.68 | 7.76 | 436. | 3,19+06 | 1.035+03 | | | 200
000
000
000
000
000
000
000
000
000 | 0.40.01
0.40.01 | 5.28=07 | | 29.0 | 7.97 | 9.68+15 | 1.75-04 | 1,66 | 7.70 | | 2,48+06 | 1,035+03 | | | 257.0 | 3.03-01 | 4.11-07 | | 29.0 | 7.94 | 8.54+15 | 1.99-04 | 1.66 | 7.66 | 433. | 2,18+06 | 1.035+03 | | - | 252.7 | 2,66-01 | 3.66-07 | | 29.0 | 9.00
0.00 | 7.61+15 | 2.23-04 | 1.63 | 7.54 | 430. | 1 70+06 | 1.035+03 | | | 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 | 2.63-01 | 2.89-07 | | 29.0 | 8.35 | 6.02+15 | 2.82-04 | 1.58 | 7.29 | 422 | 1,50+06 | 1.035+03 | | i | 240.0 | 10-77-01 | 2.56-07 | 311. | 29.0 | 8.21 | 5.33+15 | 3.19-04 | 1.56 | 7.17 |
419. | 1,31+06 | 1.035+03 | | 1 | 235.7 | 1,53-01 | 2,27-07 | 308 | 20.0 | 0.0 | 4.72+15 | 3.60-04 | 1.03 | 7.04 | | 1,15+00 | 1.055405 | | | 255
257
257
257
257
257
257 | 1,15-01 | 1.76-07 | | 29.0 | 7.78 | 3.66+15 | #0-#9·# | 1.48 | 6.79 | 408 | 8,79+05 | 1.035+03 | | | 222.9 | 9.90-02 | 1.55-07 | 299. | 29.0 | 7.64 | 3.22+15 | 5.28-04 | 1.46 | 6.67 | * #0# | 7.65+05 | 1.035+03 | | i | 23467 | 7.29-02 | 1.10-07 | 294. | 29.0 | 7.35 | 2.46+15 | 6.89-04 | 1.43 | 6.4 | 396. | + | 1.035+03 | | | 210.2 | 6.23-02 | 1.03-07 | 291. | 29.0 | 7.21 | 2,15+15 | 7.91-04 | 1.39 | | 392. | 4.96+05 | 1.035+03 | | | 308.0 | 5.31-02 | 90000 | 000 | | ř | u - + + 0 0 . | 2000 | | • | • | | #C4UMC - | TABLE 1. - MODEL ATMOSPHERE FOR EARTH --- 30 SUMMER DATA - Continued # (a) Scientific units - Concluded | HEIGH | 6
11
11
11 | PRESSURE | DENSITY | SPEED | MOLECULAR | DENS | NUMBER | A M A S A M A S A M A M A M A M A M A M | | PRES | MEAN
PARTICLE
VFLOCITY | COLL | COLUMNAR
MASS | |-----------------------|---------------------|---|---|---|-------------------|---|---------------|---|---|--|--|------------------|--| | (KR) | (A) | (Mb) | (00/M9) | | | (KM) | (PER CC) | (≆) | E+5) | (KM) | (M/SEC) | (PER SEC) | | | | | • | | | | | | | | 1 | | - | | | 74 | | 3,81-02 | 6.72-08 | 282. | 29.0 | | 1.40+15 | 21 | 1.32 | | 380. | 3,13+05 | ő | | 75 | | 3,21,02 | 5,79-08 | 279. | 29.0 | 6.63 | 20+1 | 641.00 | 1.29 | 9 | 376. | 2,66+05 | 0 | | 0,5 | 1000 | 7.01
7.01
7.01
7.01
7.01 | 00170 | 0/10 | 0.00 | בי
פי
פי
פי | 1.0041 | ç | 100 | ָ
מ
מ
מ
מ
מ
מ | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7.00+CU | 1.030+00 | | 78 | | 1.48-02 | 3.63-08 | 269. | 29.0 | 6.20 | , lu | 500 | 1,21 | | 363. | 1.61+05 | 0 | | 20 | | 1.56-02 | 3,08-08 | 266. | 29,0 | 90 • 9 | | .65-0 | 1.19 | | 359. | 1,35+05 | 0 | | 80 | e | 1.29-02 | 2,61-08 | 263. | 29.0 | 5,91 | 3 | .13-0 | 1.17 | | 355 | 1,13+05 | 03 | | 81 | - | 1.06-02 | 2,20-08 | 260. | 29.0 | 5.79 | 57+1 | .71-0 | 1.14 | • 40 ′ | 350. | 9.42+04 | 8 | | 85 | ** | 8.65°03 | 1.85-08 | 256. | 29.0 | 20.00 | Φ, | 4.42-03 | 1.12 | • | เลย | 7,81+04 | 0 | | 80 | | 7.04-03 | 1,54-08 | 253. | 29.0 | 5.49 | ,21+1 | .29-0 | 1.09 | • } | 341. | \$0+nn-9 | 0 | | a> u
00) o | | 5,000 c | 1.28-08 | 0 40
0 10
10
10
10
10
10
10
10
10
10
10
10
10
1 | 0
0
0
0 | ູດ ແ
ລຸດ | 2,67+14 | 7.50=03 | 1.07 | | 356 | 5,28+04 | 1.035+03 | | 0 | ۰ امع | 4 . C . S . S . S . S . S . S . S . S . S | 00-00-0 | | 28.0 | 0 T T | 1108 | 0 1 | 9 | 0 1 | 3000 | 1 | 2 6 | | 0 a | | 00°0°0 | 7.05.09 | , ce | , c | 7 70 | 9 4 | 16-0 | , C | 9 6 | 0 a | 0.00 to to to | ֓֞֜֜֜֜֞֜֜֓֓֓֓֓֓֓֓֜֜֜֓֓֓֓֓֓֓֓֓֓֓֡֓֜֜֜֓֓֓֓֓֡֓֡֓֡֓֡֓֜֜֜֡֓֓֡֓֡֡֡֓֡֓֡֓֡֓֡֡֡֡֓֡֓֡֡֡֡֡֡ | | 88 | | 2.30-03 | 5,71-09 | 237. | 28.9 | 4.68 | | 1.43-02 |) e | | 320 | 2 24+04 | | | ක
ල | نه د | 1.62-03 | 4.30-09 | , 4
1
1
1
1
1
1 | 28.9 | 3,62 | 8.96+13 | 1.90-02 | | 40 4 | 328. | 1,73+04 | 1.035+03 | | 06 | • | 1.46-03 | 3.29-09 | 250.0 | 28,9 | 3.81 | 6 | 2.48-02 | 0 | | 337. | 1,36+04 | .03 | | 91 | | 1.19-03 | 2,59-09 | 253. | 28.9 | 4.24 | 7 | • | | 0 | 345° | 1,08+04 | 1,035+03 | | 92 | a | 9°66-04 | 2.05-09 | 257, | 28.9 | 4.36 | .28+1 | 3.97-02 | 1,12 | | 346. | 8,73+03 | 0 | | 93 | | 7.91-04 | 1.64-09 | 260. | 28.8 | 4.48 | .42+1 | 9 | 1,14 | 0 | 351, | 7,06+03 | 1,035+03 | | 30 | • | 6.53.04 | 1,31-09 | 504 | 28.8 | 09.3 | 2,75+13 | 6.19-02 | 1,16 | เง้า
เก็บ | າ
ເກີ | 5,75403 | 8 | | S | an I | 5,59-04 | 1.06-09 | 267. | 28.7 | 4.72 | 2,22413 | 7.66-02 | 1.19 | • | 360. | 4.70+03 | 0 | | 9 C | | 7 C C C C C C C C C C C C C C C C C C C | 2000 | , c, c, | 000 | ş u | | 70 - / C - / | 7,0 | \$ u | , to to | 00400° | | | 200 | | 0. C. C. K. | 7.00-10 | 27.6 | 0000 | 2000 | ٠, | To-Te-To-To | 1 . 22 | 9 1 | 200 | 3.22403
50+03 | 2 0 | | 9 0 | • | 10000 | 0.177.0 | | , t | י
י
י | • | 10001 | 1 0 | 7 0 | , r | 204400 | | | ۸ ر
د | | 100000 | 14° 7 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 | , OAC | 0.00 | 25.20 | 200410 | 7.02-01 | 10.27 | , c | 37.6 | 7. 744CJ | 1,035+03 | | 202 | | 1.87-04 | 3,21-10 | 286. | 200 | 4.00 | | 2.47-01 | 100 | , -; | 30 S | 1,00 | 9 6 | | 202 | al a | 1.59-04 | 2,63-10 | 291. | 28.0 | 5.12 | , , , | .01-0 | 1,36 | 3ا: | 393. | 1.31+03 | 035 | | 303 | a | 1.37-04 | 2,17-10 | 297. | 27.9 | 5,32 | | 9 | 1.40 | ô | 400 | 1,10+03 | .035 | | 104 | | 1.18-04 | 1.81-10 | 302 | 27.9 | 5,52 | 3.90+12 | 4.35-01 | 1.44 | 6.88 | 408° | 9,37+02 | 1,035+03 | | 305 | | 1.02-04 | 1,51-10 | 308. | 27.8 | 5.72 | 3,28+12 | 5.18-01 | 1,48 | | 415, | 8,01+02 | • | | 106 | | 8.91-05 | 1,26-10 | 314. | 27.7 | 5,71 | 2,75+12 | 6.18-01 | 1.53 | 3 | 424 | 6.86+02 | 1.035+03 | | 107 | - A I | .81-0 | 1.06-10 | 321. | 27.6 | 5.94 | 2 • 32 + 12 | 7.31-01 | 1.58 | ٠. | 432. | 5,91+02 | 1,035+03 | | 308 | - | 2 8 8 9 | 9,03-11 | 327 | 27.5 | 0,1/ | 1.97+12 | | 1,63 | ֖֡֜֞֜֜֜֜֓֓֓֓֓֓֜֜֜֜֜֜֓֓֓֓֓֓֜֜֟֜֓֓֓֓֓֓֓֜֜֜֓֓֓֡ | 441. | 5,12+02 | e,
O | | 607 | | 000 | 11-0/0/ | 300 | 27.5 | 0.41 | 1.69+12 | ~ . | 1.68 | 3 L | 440 | 4.46+02 | 1.035+03 | | > | an a | | 77 TO 0 1 | , v | * i | * C | 404 | 00.75 | \$ / O T . | 9 (| 0 10 | 20+16.5 | ֓֞֞֜֜֜֞֜֜֜֓֓֓֓֓֓֓֓֜֜֜֜֓֓֓֓֓֓֓֓֓֓֜֜֜֓֓֓֓֓֓ | | 77 | | | 0000 | 0 000 | 21.00 | 0.00 | 1+C7 - | 1.36*00 | 9 | • | 100 | 5.43402 | 0.05 | | | 4 | ֓֞֜֜֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ | 77 0000 | ,
000
100
100
100
100
100
100
100
100
10 | , r | 0.00 | 1.00416 | n (| 2 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° | , c | ů u | 20.5402 | 2 6 | | 7 | a I . | 1.54-05 | 110001 | 200 | 24.4 | 4707 | 1 | 0 0 | . 0 | r k | *00° | 208402 | 0.00000 | | -3
-3
-3
-41 | • | 0.0 | 7 0 0 K | 0 K | 400 | 100 | 3 10+11 | • | 000 | 1 2 2 | *
* *
* * | 7 . JB 4 C C | 24000 | | 700 | اید | 0 0 | 0.00
0.00
0.00
0.00
0.00
0.00 | . 0 | 0.70 | 200 | | 3 4 | 2 9 |) c | , c | 1 04102 | 0.00 | | 9 F | o. | | 4 - | 0 0 | 9 0 | 100 | ט כ | 0.400 | • | | , | 20-T6* | 0 0 0 | | 117 | | 0 | ດີເ | ,
0 0
1 0
1 0 | 0.00 | ۱ ټ | ດີເ | 0.440 | 6 | V. | , 0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 75+05 | 0.000 | | - F | 0°7°C | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 1.97-11 | , d
0, d
0, d | 0 0
0 0
0 0 | 0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° | 4,40+11 | 0.4V400 | , , , | 12,00 | ,
13
13
13
13
13
13
13
13
13
13
13
13
13 | 1,05+07 | 1,055405 | | 120 | . i e | 0-70 | 1/2 | 406. | 26.8 | 9 | 0 | 20+0 |) (| 3 | 548 | 20+02 | 03540 | | 9
4 | | >
> | | • | ĵ | • | • | 9 | • | 1 | ř | 9 | 3 | | | COLUM | COLUMNAR MASS = | 1035,254 | GM/CC | | U | COLUMNAR MASS | SS FOR COZ | 1 | 472 61 | GM/CC | | | | | ; | | | : | | t | | | | | ; | | | | | | | | | | | | | | , | ***** | | | TABLE I.- MODEL ATMOSPHERE FOR EARTH - 30 SUMMER DATA - Continued ## (b) Engineering units | SURFACE | | • | | | | | | | | | 747 | `\ | |------------|-------------------------|--------------------|---|------------------|--------------------|------------|---|--------------------------------------|------------------------------|----------------------|--|--------------| | | PRESSURE | = 14.707 | B/SQ IN | SURFACE | TEMPERATURE | = 548 | .3 R | SURFACE DENSITY | DENSITY = | 2,25-03 | 3 SLUG/CU FT | | | PER CENT | CARBON DIOXIDE | DIOXIDE = | 0. | MOLECULAR WEIGHT | R WEIGHT = | 28.97 | | SURFACE | E GRAVITY | 32.1 | 32.17 FT/SEC/SEC |) | | | | | | | | | | | | | | | | CALCULATED | D QUANTITIES | TIES | | | | | | | | | | | | HEIGHT | TEMP | PRESSURE | DENSITY
(SI DE/ | SPEED | SPECIFIC
WFTGHT | PRES | DENS | NUMBER
DENSTTY | MEAN
PARTICLE
VFLOCITY | MEAN
FREE
PATH | VIS | KINETIC | | (MIL.FT) | (R) | (LB/SQ IN) | CU FT) | Des | | | 4 1 | (PER CU FT) | (FT/SEC) | (FT) | (E+5) | | | 0000° | 543.3 | 1,47+01 | 2,25=03 | 1148. | 7.2-02 | .029 | .043 | 6.8+23 | 1548. | 2.3-07 | 4.07 | 1.8-04 | | .0033 | 526.5 | 1,31+01 | 2,08-03 | 1127. | 7.2=02 | .028 | 240 | 6.3423 | 1520. | 2,5-07 | 3,00
4,00
4,00
4,00
4,00
4,00
4,00
4,00 | 1.9=04 | | 8600° | 508.8 | 1.04+01 | 1.71-03 | 1106. | 7.2-02 | .027 | .032 | 9 9 | 1491. | 3,0-07 | 3,79 | 2,2-0 | | 0131 | 6.86% | 9.16+00 | 1.54-03 | 1095. | 7.2-02 | .027 | 032 | 4,7+23 | 1477. | 3.4-07 | 3,72 | 2.4 | | 0197 | `~ | 7,13+00 | 1.25-03 | 1073. | 7.2-02 | ,026 | .031 | 3.8+23 | 1447. | 4.2-07 | 3.58 | 2,99 | | .0230 | 466.5 | 6.26+00 | 1.13-03 | 1059. | 7.2-02 | .025 | .031 | 3,4+23 | 1428. | 4.6-07 | 3.49 | ان
ا | | 0262 | 453.9 | 5.48+00 | 1.01-03 | 1044. | 7.2-02 | 024 | .030 | 5.1423 | 1409. | 5.7.07 | J. K. | 2 6 | | 0328 | 4 7 4 V | 4.15+00 | 8-13-04 | 1015. | 7.2-02 | ,023 | .029 | 2.5+23 | 1369. | 6.4-07 | 3,5 | #
0-0 | | .0361 | 423.9 | 3.59+00 | 7.12-04 | 1009 | 7.2-02 | 023 | • 025 | 2,2+23 | 1361. | 7,3-07 | ы
1 | # ° 50 = 0 # | | 10 C | 2 2 | 2.68+00 | 5.43-04 | 1004° | 7.2-02 | 022 | • 024 | 1.0465 | 1346 | 9.6-07 | 3,13 | 5.8 | | 0459 | 410.0 | 2,31+00 | 40-44-04 | 993. | 7.2-02 | ,022 | •024 | 1.4+23 | 1339. |
1.1-06 | 3.10 | 6.6 | | 60 c | 3°CO3 | 1.99+00 | 4° 120 04 | 987. | 7.2-02 | .022 | .024
2024 | 1.2+23 | 1331. | 1.3-06 | 3°07 | 7.5-04 | | 0558 | 306.2 | 1.47+00 | 3.11-04 | 976. | 7.2-02 | .021 | .023 | •; • | 1316. | 1.7-06 | 3.01 | 9.7-04 | | .0591 | 396.0 | 1.26+00 | 2.66-04 | 976. | 7.2-02 | .021 | •021 | 8.1+22 | 1316. | 2.0-06 | 3.01 | | | | 0,00°,0 | 1.08+00
9.23+01 | 2 • 28 = 0 4
1 • 96 = 0 4 | 976 | 7.2-02 | 120 | .021 | 0.04
0.04
0.04
0.04
0.04 | 1316. | 2,7-06 | 3.01
10.01 | າທ | | .0689 | 396.0 | 7.91-01 | 1.68-04 | 976 | 7.2-02 | ,021 | .021 | 5.1+22 | 1316. | 3,1-06 | , O | 1.8-03 | | .0722 | 399.9 | 6.78-01 | 1.42-04 | 981. | 7.2-02 | .021 | •050 | 4.3+22 | 1322. | 3,7-06 | 3.04 | ᆌ | | 0700 | # # OP # | 0.00°C | 1.03.04 | 986. | 7.2-02 | 200 | 0.00 | 0. / + KK | 1000 | 5,1-06 | ٠
د
د
د
د | กรุง | | .0820 | 12.5 | 4,32-01 | 8.79-05 | 966 | 7.2-02 | .022 | .021 | 2.7+22 | 1343. | 5.9-06 | 3.5 | | | 。0853 | 416.7 | 3.73-01 | 7.51-05 | 1001 | 7.2-02 | ,022 | .021 | • | 1350。 | 6.9-06 | 3,15 | | | 9000 | a, a,
0, 0,
0, 0, | 3,22-01
2,79-01 | 5.51-05 | 1006.
1011. | 7.2.02 | 023
023 | 021 | 1.9422 | 1356. | 8,1-06
9,4-06 | 3°50 | 4°9-03 | | ,0951 | 429.3 | 2,42-01 | 4.73-05 | 1016. | 7.2-02 | .023 | •025 | 1.4+22 | 1370. | 1,1-05 | 3.23 | 1 0 | | \$860° | 433.5 | 10-01 | 4.07-0 | 1021. | 7.2-02 | .023 | ° 022 | | - | 1,3-05 | 3.26 | 80 0 | | - C | 437.6 | 1.86.1 | ֓֜֜֜֜֜֜֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֟֜֜֜֓֓֓֓֓֓֡֓֜֟֜֜֜֓֓֓֓֓֡֜֜֜֜֜֓֓֡֓֡֓֡֡֓֡֓֡֓֡֡֓֡֡֓֡֡֜֜֜֡֓֓֡֓֡֡֓֡ | 1026 | 7.2-02 | 2 C C | מ
מ
מ
מ
מ
מ
מ
מ
מ
מ
מ
מ
מ
מ
מ
מ
מ
מ
מ | | - | 1,7.05 | 3 K | | | 2083 | 0.94 | 1,39-01 | 2.61-05 | 1035. | 7.2-02 | 0.024 | 022 | 7,9421 | 1396. | 2,0-05 | 30,34 | | | 9444 | ٤ | 20120 | 20.0 | | 2 | | | | ٠ | | | | (b) Engineering units - Continued | KINETIC | 2.4-02
2.4-02 | 4.21-02 | 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1,000 | 2.1-01
2.4-01
2.7-01
3.0-01 | 4.84-01
5.94-01
5.94-01 | 7.5.9-01
7.501
7.1-01
1.0-00
1.1-01 | 1,3+00
1,6+00
1,9+00
2,1+00 | 2.7400
3.1400
4.2400
4.2400 | 5.5+00
7.6+00
7.6+00
1.1+01 | 1.9+01
2.6+01
4.5+01
5.9+01 | |--|--|--|---|---|--|--|--|--|--|--|---| | VIS-
COSITY
(E+5) | ១៩៤៩
១៩៩៩៩
១៩៩៩៩ | 2 10 10 10 10 10 10 10 10 10 10 10 10 10 | 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | ក្រុម មួយ
១៩៩៩៩
១៩៩៩៩
១៩៩៩ | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | , 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 | 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 | 2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | MEAN
PATH
(FT) | 2.7-05
3.1-05
3.5-05 | 6.1-05
6.1-05 | 9.00
9.11
1.01
1.22
1.22
1.23
1.23
1.33
1.33
1.33
1.3 | 1.5104
1.7104
1.04
1.04
1.04 | 44444
1004
1016
1016
1016
1016
1016
1016 | 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 6.4.103
8.4.103
1.03
1.03
1.03 | 22.11.02
22.11.02
23.51.02 | 4.5
6.7
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0 | | MEAN
PARTICLE
VELOCITY
(FT/SEC) | | | | 1460.
1460.
1457.
1454. | | 1428.
1428.
1422.
1398. |
1386,
1374,
1362,
1337,
1324, | 1299.
1299.
1273.
1260. | 1219.
1219.
1206.
1178. | 1148.
1118.
1102.
1087. | 1050.
1078.
1105.
1121. | | NUMBER P
DENSITY Y
PER CU FT) | 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 2.9+21 | 120000 | 1.2 + 20
9.4 + 20
8.3 + 20
7.4 + 20 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2,4420
2,4420
2,4420
2,4420
2,4420
2,4420 | 1.5+20
1.5+20
1.3+20
1.0+20
1.0+20
9.1+19 | 7.0419
6.1419
5.3419
4.6419 | 2.0419
2.5419
1.6419
1.5419 | 1.3+19
1.1+19
9.1+18
7.6+18
6.3+18
5.1+18 | 1 2 3 4 4 1 1 2 3 4 4 1 1 3 4 4 1 1 3 4 1 3 4 1 | | DENS
SCALE
FT) (1 | 0.23 | 0024 | 020000 | 026
027
027
027 | 027
027
026 | 0000
0000
0000
0000
0000
0000 | 026
026
026
026
025
025 | 024
023
023
023 | 020
020
020
010 | 010
010
010
010
010 | 0112 | | PRES
SCALE
(MIL | 2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 20000 | 2 | 20000
2000
2000
2000
2000
2000
2000
20 | | , | 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0020 | 010
010
010
010
010
010 | 016
015
015
015 | 0100 | | SPECIFIC
WEIGHT | 7.7.5 | 7.2-02 | 7.1-02 | 7.1-02 | 7.1-02 | 7.1-02 | 7.1-02 | 7.1-02 | 7.11-02 | 7.1-02 | 7.0-02 | | SPEED
OF SOUND
(FT/SEC) | 1045
1050
1055 | 1064. | 1083.
1083.
1083. | 1083.
1083.
1080.
1076. | 1071.
1069.
1066. | 1059.
1057.
1054.
1046. | 1026.
1019.
1010.
1001.
992.
982. | 9663
9663
944
9444
9663 | 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 8841.
829.
818.
797. | 749°
749°
820°
831°
843° | | DENSITY
(SLUG/
CU FT) | 1.96-05
1.70-05
1.47-05 | 1.12-05
9.72-06
8.49-06 | 5.73-06
5.73-06
5.06-06
6.47-06 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1.90-06
1.90-06
1.49-06
1.32-06 | 1.03-06
9.05-07
7.98-07
7.12-07
6.33-07 | 5.62-07
4.98-07
5.89-07
3.89-07
3.42-07
3.01-07 | 2.30-07
2.01-07
1.51-07
1.31-07 | 7.00
7.00
7.00
7.00
7.00
7.00
7.00
7.00 | 22.08
20.08
20.08
20.08
20.08
20.08
20.08 | 1.11-08
8.36-09
6.39-09
3.99-09 | | PRESSURE
(LB/S0 IN) | 1.06-01 | 5.26-02
4.85-02
4.95-02 | 2005
2010
2010
2010
2010
2010
2010
2010 | 11.000
10.000
10.000
10.000
10.000
10.000 | 1.08-02
9.53-03
7.38-03 | 5.70-03
4.40-03
8.40-03
8.47-03 | 2,554-03
2,554-03
1,544-03
1,644-03 | 1.06-03
7.70-04
6.54-04
5.53-04 | 200 to | 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0. | 2.631-05
2.631-05
2.12-05
1.72-05 | | TouP
(R) | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 10.07 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | # # # # # # # # # # # # # # # # # # # | 4473.77
4473.77
4473.77 | ###################################### | # # # # # # # # # # # # # # # # # # # | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525
25525 | | HE IGHT
(#16.FT) | .1146
.1161
.1214 | 1312 | 1411
1444
1476
1509 | 15.40
15.40
16.40
16.40
16.40 |
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25.11.
25 | .1903
.1936
.2001
.2001 | 2067
2100
2153
2155
2198
2231 | 1 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2690
2723
2723
2723
2729
2729
2789
2822 | 2920
2920
2920
2953
2953
3019 | | * | | | | | | 1 | | | | | | TABLE I. - MODEL ATMOSPHERE FOR EARTH — 30 SUMMER DATA - Concluded (b) Engineering units - Concluded | 7.85-05
7.86-06
7.86-06
7.86-06
7.86-06
7.86-06
7.86-06
7.86-06
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.86-07
7.8 | 9 865.
8 865.
8 865.
9 885.
9 9 92.
0 910.
9 9 9.
0 9 9 9.
0 1010.
1010.
1072.
1072. | 7.0002 | 0117
0118
0119
0119
0119
0119
0119
0119
0119 | .015
.015
.015
.016
.016
.017 | 9.7+17
7.8+17
6.3+17 | 1 | 1.6-01 | 2.38 | , | |---|---|---------|--|--|----------------------------|-------|------------------|---------------------------------------|--------| | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 7.0002 | 0117
0118
0118
0119
0119
0120
0120
0120
0120
0120
0120 | 015
015
016
016
017 | 9.7+17
7.8+17
6.3+17 | | 1,6-01
2,0-01 | 0,00 | | | 20 - 9 - 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | | 7.0002 | 019
019
019
022
023
024
025
026
030
030 | 015 | 6.3+17 | | 10-0 |) - | 7.5+01 | | | | 7.0002 | 00000000000000000000000000000000000000 |
.016
.017
.017 | 1111 | | 2.5-01 | 7.43 | 1.2+02 | | 0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 | | 7.0002 | 00000000000000000000000000000000000000 | .016
.017
.017 | 20.47.41 | | 3,1-01 | 2.52 | 1.5+02 | | 00000000000000000000000000000000000000 | | 7.0002 | 00000000000000000000000000000000000000 | 017 | 4.2+17 | | 3.7-01 | 200 | 1.9+02 | | 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | 7.0002 | 0020
0020
0020
0020
0020
0020
0020 | .017 | 3.5+17 | | , c | ,
,
,
, | 7.040X | | | | 7.0002 | 0020
0023
0025
0020
0020
0030
031 | | 2.4+17 | | 6.6-01 | 9.66 | 3,5+02 | | ## # # # # # # # # # # # # # # # # # # | | 7.0002 | 025
025
025
025
025
025
030
030 | .016 | 1.9+17 | | 8.1-01 | 2.75 | 4.4+02 | | # 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 7.0002 | 0 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | • 017 | 1.6+17 | - 1 | 9.9-01 | 2.83 | 5.5+02 | | 20 | | 7.0-02 | 025
025
025
025
027
030
030 | .017 | 1,3+17 | 1314. | 1.2+00 | | 5.9+02 | | | | 7.0002 | 025
025
025
026
020
030 | 010 | 7111 | | 7+00 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1,1+03 | | | | 7.00-02 | 020
020
030
030
030 | 010 | 7.44.7 | | 0010 | 000 | F0+F. | | | | 7.00-02 | 020
020
030
030 | 010 | 91+9*/ | | 00+00 | 100 | 1,6403 | | | | 7,0-02 | 020 | .020 | 5.6+16 | | 2,8+00 | 3,40 | 1.9+03 | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 7,0002 | . 028
. 030
. 031 | .021 | 4.8+16 | | 3,3+00 | 3.51 | 2,4+03 | | 11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 | • | 7.0-02 | 030 | .022 | 4.1+16 | 1499. | 3.8+00 | 3.63 | 2.8+03 | | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | • | 7.0-02 | .031 | •022 | 3.5+16 | 1530. | 4.5+00 | 3.77 | 3.4+03 | | 122-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | • | 7.0-02 | , | .023 | 3,1+16 | 1561. | 5,2+00 | 3.91 | 4.1+03 | | 24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 7.0-02 | .032 | .023 | 2.7+16 | 1591. | 5.9+00 | 4.05 | 4,9403 | | | 1 | 7.0-02 | 033 | • 054 | 2.3+16 | 1621 | 6.8+00 | 4.13 | 5.8+03 | | 111100000000000000000000000000000000000 | _ | 7.0-02 | 034 | .025 | 2.0+16 | 1650. | 7.8+00 | 4,21 | 6.7+03 | | | | | 936 | 9.00 | 1.8+16 | 1680 | 8-8+00 | . t. | 7.8+03 | | | | 7.0-02 | 750. | /20. | 1.6416 | 1/11. | 1.0+01 | , o | 70+07 | | 11- | | 7.0-02 | 2 4 | 400 | 1.416 | 1760 | 10101 | 1 1 1 | 1,0+04 | | | | 7.0-02 | .047 | 020 | 1,1+16 | 1798. | 1.4+01 | 4.65 | 1.4+04 | | 222222222222222222222222222222222222222 | | 0.0 | 000 | 000. | 0.0 | • | 0.0 | 00. | 0.0 | | | 0. | 0.0 | 000 | 000 | 0.0 | o. | 0.0 | 00. | 0.0 | | | | 0.0 | 000 | 000 | 0.0 | å | 0.0 | 00. | 0.0 | | | : | 0.0 | 000 | 000 | 0.0 | å (| aj c | 000 | 0.0 | | | | • | | | • | ċċ | | 200 | 0.0 | | | | 0.0 | 000 | 000 | 0.0 | 0 | 0.0 | 00. | 0.0 | | 000000000000000000000000000000000000000 | | 0 | 000 | 000 | 0 | ċ | 0.0 | 00. | 0.0 | | 000000000000000000000000000000000000000 | • | 0.0 | 000 | 000 | 0 | | 0.0 | • 00 | 0.0 | | 800000000000000000000000000000000000000 | 7 | 0.0 | 000 | • 000 | 0.0 | • | 0.0 | • 00 | 0.0 | | | | 0.0 | 000 | 000 | 0.0 | ċ | 0.0 | 000 | 000 | | | | 0.0 | | 9 5 | | ٠ اه | | 200 | 0.0 | | 2000000 | | 90 | | 000 | 0 | | 0 | 9 | | | 00000 | | 0.0 | 000 | 0000 | 0.0 | | 0.0 | 00° | 0.0 | | 8888 | | 0.0 | 000° | 000 | 0.0 | | 0.0 | 00° | 0.0 | | 300 | | 0.0 | 000 | 000 | 0.0 | | 0.0 | ô | 0,0 | | 38 | | 0.0 | 000 | 000 | 0.0 | • | | 000 | 000 | | 2 | | • | | | • | | | | 2 | | 9 | 1 | 0.0 | 000 | 000 | 0 | | 0.0 | 000 | 0.0 | | 00.0 | | 0.0 | 000 | 000 | 0.0 | | 0.0 | 00. | 0.0 | | 00.0 | ; | 0 | 000 | 0000 | 0.0 | | 0.0 | 00 | 0.0 | | 0.00 | | 0.0 | .000 | 000 | 0.0 | | 0.0 | 00° | 0.0 | | 0.00 | | 0.0 | 000 | 000 | 0.0 | • | 0.0 | 000 | 000 | | 9 6 | o c | 90 | | 000 | 500 | • • | 20 | 200 | 0 | | 000 | | 0.0 | 000 | 000 | 0 | | 0.0 | 00. | 0.0 | | 0.00 | | 0.0 | 000 | 000 | 00 | • | 00 | 8 | 0.0 | | 2,00 | | n°n | 2000 | 1000 | 2. | • | 2 0 | 200 | 200 | ### (a) Scientific units | 12 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | |--| | TE 1021.00 MB = 6.378.00 (KM) = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 E-000 | | ++++++++++++++++++++++++++++++++++++++ | | | TABLE IL. MODEL ATMOSPHERE FOR EARTH — 30 WINTER DATA - Continued (a) Scientific units - Continued | MEIGHI | TEMP | PRESSORE | OFNST | OF SOUND | ME TONE | SCALE | DENSITY | PATH | COSITY | SCALE | VELOCITY | FREG | MASS | |----------
---|-------------|--|----------|---------|-------|----------|--|---------|--------|----------|--------------------|---| | (KM) | 3 | (Mb) | (6M/CC) | (M/SEC) | | (KM) | (PER CC) | € | (E+5) | X
X | (M/SEC) | (PER SEC) | | | 16 | 2000.7 | 0.62+01 | 1.65-04 | 286. | 29.0 | 6.62 | 3.44+18 | 4.94-07 | 1.35 | 5.96 | | 7,79+08 | 9,438+0 | | 2 | 1900 | 8.13401 | 1,42-04 | 283. | 29.0 | 6,51 | 2.95+18 | 5.75-07 | 1.33 | 5.87 | 382. | 80+19*9 | 9,591+02 | | 18 | 196.0 | 6.84+01 | 1.22-04 | 281. | 29.0 | 6.40 | 2.53+18 | 6.72-07 | 1,31 | 5,7 | | 5.64+08 | 9,723+0 | | 19 | 197.0 | 5,76+01 | 1.02-04 | 281. | 29.0 | 200 | 2,12+18 | 0-20-9 | 10.1 | 000 | | 40 1 1 1 0 p | 9.00 | | ල : | 900 | 4.65403 | 8 55-00
4 56-00 | , K. | 200 | , r | 10//+10 | 1.144=04 | 7 1 | , r | | 3.34+08 | 1,001+0 | | 22 | 200 | 3.65401 | A 10-05 | , to 00 | 29.0 | 5.73 | 1.25+18 | 1.36-06 | 1.33 | 5.6 | | 2,81+08 | 1.007+0 | | 4 C | 2000 | 2,91401 | 5,02 | 285 | 29.0 | 5.61 | 1.04+18 | 1.63-06 | 1.34 | 5.96 | | 2,36+08 | 1,013+0 | | 300 | 204.2 | 2.46+01 | 4.20.05 | 287 | 29.0 | 5.67 | 8.74+17 | 1.94-06 | 1.36 | 6,02 | | 1,99+08 | 1.017+0 | | . ru | 206.2 | 2,09403 | 3,53-05 | 288. | 29.0 | 5.73 | 7.33+17 | 2.32-06 | 1,37 | 6.09 | | 1.68+08 | 1.021+0 | | 98 | 208.5 | 1.0777+01 | 2,96-05 | 290° | 29.0 | 5,79 | 6.16+17 | 2.76-06 | 1,38 | 6.15 | | 1.42408 | 1.024+0 | | 27 | 210.6 | 1.51+01 | 2,50-05 | 291. | 29.0 | 2.85 | 5.1941/ | 3.27=06 | 1.59 | 9 0 | - | 1,20+08 | 1.020 | | 8 | 2320 | 1,29401 | 2,11-05 | 292 | 0.00 | 2°61 | 4.38+1. | 3.68-00 | 1040 | 0 0 0 | | 1.02400
8.63407 | 1,02910 | | 60 | 6.4.6.0 | 10+01-0 | 7. 78-00
10-01-01-01-01-01-01-01-01-01-01-01-01-0 | * 4 | | , , | 71411 | 5.42=06 | 1 . 42 | | | 7 34+07 | 1,033+0 | | 3 : | 200 | 9°00400 | 1.28-05 | . 600 | 90.0 | 60.0 | 2.66+17 | 6-39-06 | 10,4 | 6.47 | | 6,26+07 | 1,034+0 | | 32 | 223.03 | 6.89+00 | 1,09-05 | 298 | 29.0 | 6,15 | 2.26+17 | 7.53-06 | 1.45 | 6.54 | | 5.34+07 | 1.035+0 | | 10 | 89.00 | 5.92+00 | 9.23-06 | 300° | 29.0 | 6.21 | 1.92+17 | 8.85-06 | 1.46 | 9.60 | | 4,56+07 | 1,036+0 | | 34 | 225.4 | 5.09+00 | 7.87-06 | 301. | 29.0 | 6.28 | 1.64+17 | 1.04-05 | 1.047 | 6.67 | | 5,91+07 | 1,037+03 | | S. | 227.5 | 4 . 38 00 | 7 | 302 | 29.0 | 6°34 | 1.40+17 | 1.22.05 | 1.48 | 0 | i | 5,35407 | 1.038+0 | | 9 | 2200 | 3,78+00 | ŗ, | 406 | 0°0 | 9,40 | 1.19+17 | 1.42-05 | 1.50 | 900 | | Z.88+07 | 1.00940 | | 37 | 231.07 | 3.26+00 | 6 | 305 | 29.0 | 0.40 | 1.0241/ | 1000 | 10.1 | 000 | | 2 4 7 4 0 7 | 10000 | | OD (| 9 19 19 19 19 19 19 19 19 19 19 19 19 19 | 200400 | 4.21*05 | 307 | 0.00 | 200 | 8.75+10 | 1.94************************************ | 7.5 | 26.0 | | 1 84407 | 1,040+0 | | 200 | 65.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00 | 0040 | 2001 | 000 | 0.00 | 200 | 91450 | 2000 | 1,00 | 7,005 | į | 1.50+07 | 1.040+0 | | . | 200 | 00483 | 900 | 2000 | 200 | | 5.52416 | 3.07.05 | 1.56 | 7,16 | | 1.37+07 | 1.041+0 | | -3 C | 200 | 1.50400 | 2 28=06 | - 7 F | 2.0 | 6.50 | 4.75+16 | 3.58-05 | 1,58 | 7.26 | | 1,18+07 | 1.041+0 | | 9 F | 244.0 | 1.40+00 | 1.96-06 | 316. | 29.0 | 69.9 | 4.08+16 | 4-16-05 | 1.60 | 7.36 | | 1,02+07 | 1,041+03 | | 44 | 251.5 | 1.22+00 | 1.69-06 | 318. | 29.0 | 6.78 | 3.52+16 | 4.82-05 | 1.62 | 7.46 | 1 | 8,89+06 | 1.041+03 | | S) | 254.9 | 1.07+00 | 1.46-06 | 320. | 29.0 | 6.88 | 3.04+16 | 5.59-05 | 1.64 | 7.57 | | 7,73+06 | 1.041+0 | | 94 | 258.3 | 9.38-01 | 1.27-06 | 322. | 29.0 | 6.97 | 2.63+16 | 6.45-05 | 1.66 | 7.67 | | 6,73+86 | 1.042+0 | | 47 | 261.6 | 8.24-01 | 1.10-06 | 324 | 0.0 | 90.7 | 2.28+16 | 7.44-05 | 1.08 | | | 2 4 3 4 0 G | 1.042+0 | | 9 (| 0.000 | 7.25-01 | 40°54°0 | 320 | 200 | 07. | 1.78+10 | 0.01/0.0 | 1.71 | 7.88 | | 53+06 | 1.042+0 | | 40 | 265.0 | 5.63-01 | 70-07 | 326. | 29.0 | .88 | 1.54+16 | 1.10-04 | 1:71
| 7.88 | | 3,99+06 | 1,042+0 | | 3 5 | 26.50 | 4.96-01 | 6.52-07 | 326. | 29.0 | 7.88 | 1.35+16 | 1.25-04 | 1.71 | 7.88 | . Otata | 3,51+06 | 1,042+0 | | 25 | 265.0 | 4.37-01 | 5.74-07 | 326 | 29.0 | 7.88 | 1.19+16 | 1.42-04 | 1.71 | 7.88 | | 3,09+06 | 1.042+0 | | 100 | 265.0 | 3.65-01 | 5,06-07 | 326. | 29.0 | 7.89 | 1.05+16 | 1.62-04 | 1.71 | 7.89 | . } | 2,72+06 | 1.042+0 | | 36 | 265.0 | 3.39-01 | 4.45-07 | 326. | 29.0 | 7.89 | 9.26+15 | 1.83-04 | 1.71 | 7.89 | | 2.40+06 | 1.042+0 | | 55 | 265.0 | 2.98-01 | 3.92-07 | 326. | 29.0 | 7.89 | 8.16+15 | 2.08-04 | 1.71 | 689 | 1 | 2,11+06 | 1.042+0 | | 20 | 262.5 | 2.63-01 | 2°49-07 | 325 | 23.0 | ‡ ! | 7.25+15 | 101101 | T . 0 . | 700, | | 1 65406 | 10000 | | 2, | 0000 | 100100 | 101010 | 200 | 20,00 | 000 | 21112 | 20.0 | 99 | 7 | ı | 1 46+06 | 1.042+0 | | a (| 407.00 | 10.00 | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | | 9 00 | 200 | E.06415 | 7. 46=04 | 44.1 | 7.61 | | 1.20+06 | 1.042+6 | | 200 | 200 | 20101 | 200 | | | 4 | | 30-04 | 4 | 2.5 | | 1.13+06 | 1.042+0 | | 9- | 8 C | 10.52-01 | 1.00-07 | 417 | | 90.8 | 3.96+15 | 20-00-1 | 1.62 | 7.46 | | 9.96+05 | 1.042+0 | | 3 | 243.4 | 1-19-03 | 1.68-07 | 316. | 29.0 | 7.98 | 40+1 | 40-98-4 | 1.60 | 7.39 | 425. | 8,75+05 | 1.042+03 | | 160 | 2000 | 1.04-01 | 1.48-07 | 314. | 29.0 | 7.90 | 3.08+15 | 5.52-04 | 1.59 | 7,32 | | 7,67+05 | 1.042+0 | | 999 | 242.7 | 9.08-02 | 1.30-07 | 312. | 29.0 | 7.83 | 2-71+15 | 6.27-04 | 1.57 | 7.25 | | 6,72+05 | 1.042+0 | | 10 | 240.3 | 7.91-02 | 1,15-07 | 311. | 29.0 | 7.75 | .38+1 | 7.12-04 | 1.56 | 7,18 | - 1 | 5,88+05 | 1,042+0 | | 99 | 237.6 | 6.87-02 | 1,01-07 | 309° | 29.0 | 7.67 | 2.09+15 | 8.11-04 | 1.5 | 7,11 | | 5.14+05 | 1.042+0 | | 67 | 235.3 | 5.97-02 | 8.83-08 | 308. | 29.0 | 7.59 | . 84+1 | 9.25-04 | 1.00 | 3 | - 1 | 004040 | 1.000 | | 89 | 232.9 | 5.17-02 | 7.74-08 | 306 | 200 | 7.25 | 1.61+15 | 1.05-03 | | 0 4 | | 3,91403 | 2 0 4 C 4 C 5 C 5 C 5 C 5 C 5 C 5 C 5 C 5 C | | 20 | 3000 | 2010 | 000000 | 200 | 20.00 | 72 | OTATA OT | 10.42 | 07 | | | 0.04 | 2 . O # 2 . E | | 2 ; | 6.177 | 30°0'8'0'8' | 2,91~08 | , , | 2000 | 500 | 1000 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 101 | 7.7 | | 2,36+0.5 | 1,042 | | 26 | 2000 | 200100 | 0.10100 | 200 | 0000 | 000 | 71-70-1 | 10000 | 1046 | 9 | 404 | 2,22+05 | 1.042+03 | | ٧ | | | | | | | | | | | | | | # TABLE II. - MODEL ATMOSPHERE FOR EARTH --- 30 WINTER DATA - Continued # (a) Scientific units - Concluded | HEIGH | F.
F. | PRESSURE | DENSITY | SPEED
OF SOUND | MOLECUL AR | DENS . | NUMBER | MEAN
FREE
PATH | VIS- | 10.14 | MEAN
PARTICLE
VELOCITY | COLL | COLUMNAR
MASS | |--------------|---|--|---------------------------------------|---|--|----------|---------------|----------------------|------------|--------|--|------------------|--| | (XX) | (K) | (AM) | (GM/CC) | (M/SEC) | | (KM) | (PER CC) | (M) | (E+2) | (KM) | (M/SEC) | (PER SEC) | | | | • | | | | | | ; | | | | | | | | 74 | 22600 | 2.14-02 | 19 | 301. | 29.0 | 6.48 | 6.85+14 | | 70 | 6.77 | 406. | 1,64+05 | 1.043403 | | 75 | 227.5 | 1.84-02 | 2,82-08 | | 29.0 | 6.52 | 5.87+14 | | 1.48 | • | 408° | 41+0 | 043+0 | | 76 | 0
0
0
0
0 | 1,59-02 | 7.42.08 | | 0.00 | 6,57 | 5.04+14 | 3.07.03 | 1.
5.00 | 6.86 | #09° | 1,01+05 | 1,043403 | | 78 | 232.0 | 1.19-02 | 1.79-08 | | 29.0 | 6.66 | | 4.56-03 | 1.51 | | 412. | 7 " | .043+0 | | 79 | 233.5 | 1.03-02 | 1.54-08 | | 29.0 | 6.70 | 3.21+14 | 5.30-03 | S | œ; | - 1 | 7.80+04 | 0. | | 80 | 235.0 | 8.97-03 | 1,33-08 | | 29.0 | 6.75 | 2.76+14 | 6.15-03 | ø | 7.05 | | | 9 | | 63 | 236.0 | 7.78~03 | 1,15-08 | | 29.0 | 6.87 | 2,39414 | 7.11-03 | ນີ້ | • | 3 | 2,84+04 | Ď | | @ @ | 04 0 | 6.76-03
5.88-03 | 9.94-09 | \$ 00 K | 0° 0° | 0°0 | 2.07+14 | 8.22103
9.10103 | | 7,12 | 416° | 30+04
4.30+04 | 1,046403 | | 84 | 23000 | 5.11-03 | 7.45=09 | | 29.0 | • • | 1.55+14 | 1.10-02 | S | | | 3.81+04 | 0 | | (0) | 240,0 | 4.45-03 | 6.45-09 | į | 28.9 | 7.00 | 1.34+14 | 1,27-02 | 1.56 | 7,22 | O | 3,31+04 | 0 | | 96 | 235.6 | 3,87-03 | 5,72-09 | | 28.9 | 8.17 | ,19+1 | 1.43-02 | 1.53 | 7.09 | | 2.91+04 | 1,043+03 | | 87 | 23102 | 3.35-03 | 5.05-09 | - | 28,9 | 8.02 | ,05+1 | 1.62-02 | 1,50 | 96 99 | 411. | 2.54+04 | 1,043+03 | | 83 | 826
80
80
80
80
80
80
80
80
80
80
80
80
80 | 2.90-03 | 4.45-09 | | 28,9 | 7.87 | 9.27+13 | 1.83-02 | 1.48 | 6.83 | 407. | 2.22+04 | 1.043+03 | | 688 | 22204 | 2,50-03 | 5,92-09 | | 28,9 | 10,12 | ٦, | 20-92-02 | 1.46 | 0) 0 | | 1,94+04 | 1.043+03 | | g, 6 | 9 7 | 20 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - | 3 | | 0°0 | 7.57 | 7.15413 | 2.37=02 | | 6.57 | 000 P | 1.68404 | 1,043403 | | 180 | 23.00 | 1.000 | 2 | | 0,00 | 2,0 | 5.48410 | 7. C | 1 - | 2004 | | 10 C | 1004000 | | ¥ *
3× (2 | N O | 00 1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | ខ្លុំ | | ָ
װ
װ
װ | 9 . | 74437°D | 20-01.c | | 0.0 | | 24040 | 10 + C + C + C + C + C + C + C + C + C + | | 3 3 | 64.3°E | 7.000 | ر
ا | : | 0 0 | 6.67 | 4 07413 | 700000 | *** | 7 1 7 | | 0 + / O e | 1.045403 | | \$ 1C | 214 | 30°00°0 | ֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ | | 0 00 | 6,6 | しょうしょう | 4.97-02 | 0 PP | 6.40 | 300 | 7.93403 | 1,043+03 | | 96 | 212.6 | 8.52-04 | 5 | | 28.7 | 6.05 | 2,90+13 | 5.85-02 | 1.40 | 6.47 | | ,77+0 | 1.043+03 | | 6 | 234.2 | 7.31-04 | - | | 28,6 | 6,12 | 2.47+13 | 6.87-02 | 1042 | 6.54 | 398 | 5,79+03 | 1.043+03 | | 96 | 215.8 | 6.28~04 | 36. | | 28.5 | 6.18 | 2.11+13 | 8.06-02 | 1.42 | 6,62 | | 4,97+03 | 1,043+03 | | 66 | 21704 | 5.40-04 | 7 | i | 28.4 | 6,25 | 1.80+13 | 9.44-02 | ٦.
د | 69°9 | 1 | 4,26+03 | 043+0 | | 00 | 219.0 | 9 | | | 200
100
100
100
100
100
100
100
100
100 | ດ
ເກີ | 1,54+13 | 1.10-01 | 1.44 | 6,76 | 404 | 3.67+03 | 043+0 | | 100 | 223.6 | 4002-04 | 3 | | 200 | 3.96 | 1.50+13 | 1.30-01 | 9 | 5,02 | 409 | 3,14+03 | 1.043+03 | | 4 F | 0 0
0 0
0 0
0 0 | P (| 4 = | | 7 . BC | 200 | 1.414 | 1000001 | - Le 4 | 7,03 | 101 | 0 4 C 4 C C | 04240 | | 200 | 237.4 | 50 | 1 | | 28.0 | 6,38 | A.07+12 | 2.10-01 | 300 | 7.42 | 1 | 2.01+03 | 1.043+03 | | 105 | 7 to 0 | 2.32.04 | . ~ | | 28.0 | 6.52 | 6.93+12 | 2.45-01 | 1.57 | 7.58 | 428 | 1,75+03 | .043+0 | | 106 | 8446 | 2.03-04 | 12 | | 27.9 | 7,05 | 6.03+12 | 2.82-01 | 1.58 | 7,67 | | 1,53+03 | 1.043+03 | | 107 | 246.4 | 1.78~04 | 4 | | 27.8 | 7,13 | 5.25+12 | 3.24-01 | 1,59 | 7,26 | - | 34+0 | .043∻0 | | Ø (| 9 | 1.57-04 | | 100
100
100
100
100
100
100
100
100
10 | 27°8 | 7,22 | 4.57+12 | 3.71-01 | | 1,000 | ម្ចា
ម្ចា
ម្ចា
ម្ចា
ម្ចា
ម្ចា
ម្ចា
ម្ចា | 1,17+03 | 1.043403 | | 200 | 0000
0000
0000 | 1 . 20 - 0.4 | 1 0 | 207 | 27.6 | 002. | 4000 | 10-10-1 | 1.00 | S C | - | 0+50 | 04040 | |)
4
4 | | 1.08.04 | | 1 10 | 2,7,0 | 9,00 | 3,01412 | 10°00°0 | , 4 | 200 | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 000 | 1,043+03 | | 8 00 | 26.0 | 50.05 | 0 | , K | 27.5 | 100 | 0.709 | A. 50.01 | , (| a
I | | 0770 | 104404 | | 4 m | 274.6 | | | 9
10
10
10
10
10
10
10
10
10
10
10
10
10 | 24.5 | 7,04 | 2.25+12 | 7.54-01 | 1.77 | 9,43 | 100 | 6,10+02 | 1.043403 | | 234 | 281.8 | | .93-1 | 346° | 27,4 | 7.24 | 1,96+12 | 8.65-01 | æ | 9.03 | | 39+0 | 1,043+03 | | | 289 * 0 | | ,79-1 | 351. | 27.3 | 7.44 | 1.72+12 | 90 | Φ, | 9,28 | 3 | *78+0 | 1,043+03 | | 316 | 297 8 | | .79-1 | 356, | 27,3 | 7,36 | 1,50+12 | 1.13+00 | 1,92 | 9,59 | 4 | \$24+0 | 1,043+03 | | 117 | 306.7 | | .94-1 | 362 | 27.2 | ô | 1.31+12 | 1.29+00 | 0 | 9,90 | 1 | .77+0 | 2+0 | | @ 0
~! ~ | 3.50
5.50
5.50
5.50 | 5.03.05 | 5.24 | 367 | 27.2 | 7.83 | 1.15412 | 1.47+00 | 1°0 | 2001 | 14 TA | 3,37+02 | 1,043403 | | 120 | 33300 | | 07~1 | 378. | | , P | .04+1 | 88 | 90 | . 0 | | .71+0 | +0 | | 3 | | | • | | ١. | ' | | | | | | 1 | | | | COLUM | COLUMNAR MASS = | 1042,524 | GM/CC | | 0 | COLUMNAR MASS | ASS FOR CO2 | 11 | 475 6 | 6M/CC | | | | | | | | | | | | | | | | | | TABLE II. - MODEL ATMOSPHERE FOR EARTH - 30 WINTER DATA - Continued ## (b) Engineering units | PER CENT | CARBON D | | | SURFACE | TEMPERATURE | = 468. | 0
ع | SURFACE D | DENSITY = | 2.66-03 | SLUG/CU FT | | |---|---|-------------------|-------------------|-------------------|---|----------------------------|----------------------------------|--|----------------------|---------|-----------------|---| | | | DIOXIDE = | 0. | MOLECULAR | R WEIGHT = | 28.97 | | SURFACE | E GRAVITY | = 32,17 | FT/SEC/SEC | | | CALCULATED | QUANTITIE | i . | MEAN | MEAN | | | | HEIGHT | TEMP | PRESSURE | DENSITY
(SLUG/ | SPEED
OF SOUND | SPECIFIC WEIGHT | PRES | DENS | NUMBER | PARTICLE
VELOCITY | FREE | VIS- | KINETIC
VISC | | (MIL.FT) | (R) | (LB/S@ IN) | CU FT) | (FT/SEC) | | 1 1 | FT.) | | (FT/SEC) | (FT) | (E+5) | | | 0000° | 0.89% | 1,48+01 | 2.66-03 | 1061. | 8.6-02 | ,025 | .027 | 8.1+23 | 1430, | 2.0-07 | 3.50 | 1.3-04 | | .0033 | 464°4 | 10-02 | 2.35-03 | 1057. | 8.5-02 | .025 | • 026 | 7.1+23 | 1425 | 2.2-07 | 3.47 | 1.5~04 | | 00000 | \$60°8 | 1.24+01 | 2.07-03 | 1052. | 8.5-02 | 0020 | • 020 | 6.0+20 | 1419. | | 2 c | 1.7-04 | | 0 40 c | #
#
#
#
#
| 8.67+00 | 1.63-03 | 1036. | 8.5-02 | \$ 50° | .027 | * 69 | 1397 | 3,2-07 | | 2,1-04 | | ,0164 | 439.3 | .55+00 | 1.44-03 | 1028。 | 8.5-02 | ,023 | •027 | | 1386, | 2-0 |
3,30 | 2,3-04 | | 7010. | 432.1 | 6.56+00 | 1.27-03 | 1019 | 8.51.02
5.102 | 0
0
0
0
0
0 | 0 0 0
0 0 0
0 0 0
0 0 0 | 3, 4
4, 4
4, 4
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 | 1374 | 4.1-07 | 3,25 | 2.6-04 | | 2000
2000
2000
2000
2000
2000
2000
200 | 417.8 | 4°91+00 | 9.87-04 | 1002 | 8.5-02 | 025 | .025 | | 1351. | 5.3-07 | ຸນ
ກຸກ
ເຄ | 3.2-04 | | 0295 | 410.7 | 4.24+00 | 8.66-04 | • 166 | 8.5-02 | 022 | . 025 | • | 1340. | 6.0-07 | 3,11 | 3.6-04 | | 0.0328 | 403.5 | 3.64+00 | 7.58-04 | 985. | 8.5-02 | .022 | •024 | 901 | | 6.9-07 | 3,06 | \$ 0-0¢ | | 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 900 | 3,43400 | 7,77,04 | 9/0 | 8.5102 | ָרָל
מיני | 900 | | 13.10° | 0.0.0 | 5,0 t | 10°0°0°0°0°0°0°0°0°0°0°0°0°0°0°0°0°0°0° | | 1240 | 383.1 | 2.28+00 | 5.00-04 | 960 | 8.5-02 | 021 | 023 | 1.5+23 | | 1.0-06 | 2.93 | 5.9-04 | | *0459 | 37701 | 1.94+00 | 4.33-04 | 952. | 8.5-02 | ,020 | • 022 | 1,3+23 | 1284. | 1,2-06 | 2.89 | 6.7-04 | | | 371.0 | 1.65+00 | 3,73-04 | 945. | 8.51-02 | 020 | 0.22 | 1,1+23 | 1273. | 1.6-06 | 20°5 | 7.6-04
8.8-04 | | 0558 | 358.9 | 1.18+00 | 2.76-04 | 929. | 8.5-02 | ,019 | .021 | 8.4+22 | 1252 | 1.9-06 | 2.77 | 1.0-03 | | .0591 | 352.8 | 9,93-01 | 2.36-04 | 921. | 8.5-02 | .019 | .021 | 7.2+22 | 1242. | 2.2-06 | 2,73 | 1.2-03 | | 7 Y | 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = | 6.55-01
7.5-01 | 1.98-04 | 923° | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 610. | 810 | 0.0+22 | 1245 | 00100 | , c | 1.4.0.4. | | 9690 | 2000 | 5 Co. R | 1000 | - CO | 20.0 | 010 | .010 | 2000 | 1251 | 3,7=06 | 2,73 | 20.0 | | | 360.0 | 5,00-01 | 1.17-04 | 930. | 8.5-02 | 010 | •019 | 3.5+22 | 1254. | 4.5-06 | 2,78 | 2.4-03 | | 0755 | 363.8 | 4.23-01 | 9.75-05 | 935. | 8.5-02 | .020 | .018 | 3.0+22 | 1261. | 5°3-06 | 2.81 | 2.9-03 | | 2000 | 00/00 | 7.00=01 | 00 1 / mU3 | 940 | A 5-02 | 000 | 610. | 20100 | 1274 | 00-4-00 | 0 0 | 2000 | | , 60
60
60
60
60
60
60
60
60
60
60
60
60
6 | 200 | , , | 5,76-05 | 950. | 8.5-02 | 020 | 010 | 1.7+22 | 1281. | 9.0-06 | 88.8 | | | 9880° | 379.0 | 2018-01 | 4.85-05 | 955. | 8.5-02 | 020 | 010 | 1.5+22 | 1287 | 1.1-05 | 2.90 | 6.0-03 | | \$780° | 382.8 | TO-04 | 00-60 to | 428 | 0.0-0 | 7700 | 670 | 701707 | 4400 | 7 ° 5 | 26.50 | wρ I ν | | 1 37 CO | 0 00 | 1.36-01 | 2,93-05 | 969 | 8.5-02 | 1100 | 050 | 8.9+21 | 1306. | 1,8-05 | , v, | , , | | 1017 | 394.2 | 10-11-1 | 2,48-05 | 974. | 26.3 | ,021 | .020 | | 1313. | 2,1-05 | 3.00 | | | .1050 | 398.0 | 000 | 2,11-05 | 978。 | 8.5-02 | .021 | °020 | 6.4+21 | 1319. | 2,5-05 | 3,02 | 1.4.0 | | . 1083 | 401.8 | 8.58-02 | ٦, | 983 | S. | 000 | .020 | 10° 4 | K
C
K | C | | | TABLE II. - MODEL ATMOSPHERE FOR EARTH --- 30 WINTER DATA - Continued (b) Engineering units - Continued | | | | | | | I WITE OF THE | ط
د د د | ER CU FT) | (PER CU FT) (FT/SEC) | (FT) | (6+2) | À. | |---------------------|--|--------------------|--------------------|-------|-------------------|----------------------------|---|-----------|----------------------|------------------|----------------------------|-------------| | .1148 | 409.4 | 6.36-02
5,49-02 | 1.30-05 | 992. | 8.5-02
8.5-02 | 022 | 0.021 | 4.0+21 | 1338. | 4.0-05 | 3,10 | 2.4-02 | | ,121¢ | 417.0 | 4,74-62 | 9.54-06 | 1001. | 8.5-02 | 023 | .021 | 2.9+21 | - 1 | 5,5-05 | 3,15 | 3.9-02 | | .1312 | 404.6 | 3,55-02 | 7.02-06 | 1010. | 8.4-02 | . 0.23
0.23
5.23 | .022 | 2,1+21 | | 7.4-05
8.6-05 | 3.50
3.50
3.50 | 5.4-02 | | 130 F | 434.5 | 2.67-02 | 5.17-06 | 1022. | 8.4-02 | ,023 | .021 | 1.6+21 | | 1.0-04 | 3.27
5.24 | 6.3-02 | | 141. | 9099 | 2,03-02 | 3.82-06 | 1036. | 8.4-02 | 100 | 0,00 | 1.2421 | | 1.0 | 100 | 8.8-02 | | .1476 | 452.7 | 1,55-02 | 2.84-06 | 1050 | 8.4-02 | .025 | • 023 | 8.6+20 | | 1.8-04 | 3.43 | 1.2-01 | | 1509 | 454.9 | 1.20-02 | 2,46-06 | 1057. | 8.4-02 | 025 | .023
.023 | 7.5+20 | | 2.4-04 | | 1.4-01 | | 1575 | 977.0 | 1.05-02 | 1.85-06 | 1071. | B.4-02 | 0.26 | .023 | 5,6+20 | | 40-8
8-04 | 3.56 | 1.9-01 | | , 1608
1640 | 477.0 | 9.27-03
8.17-03 | 1.63-06 | 1071. | 8.4-02 | .026
.026 | .026
.026 | 4.4.20 | | 3,2-04 | 3.56 | 2.5-01 | | ,1673 | 477.0 | 7,19-03 | 1.27-06 | 1071. | 8.4-62 | .026 | ,026 | 3.8+20 | | 4.1-04 | 3,56 | 2.8-01 | | 1739 | 477 e 0 | 6.34-03
5.58-03 | 1.12-06 | 1071. | 8.4-02 | 026 | • 026
• 026 | 3.0+20 | | 5.3-04 | 10 50
50 50
50 50 | 3.6-01 | | 1772 | 477.0 | 4,921-03 | 8.66-07 | 1071. | B.4-02 | 026 | • 026 | 2.6+20 | | 90-04 | | 4.1-01 | | . 5000
5000 | \$ 1 C & C & C & C & C & C & C & C & C & C | 3.81=03 | 6.78-07 | 1066. | 0.4102 | 026 | .028 | 2.1+20 | | 7.7-04 | , n
0, n | 5.2-01 | | .1870 | 468.1 | 3.35-03 | 6.02-07 | 1061. | 8,4-02 | ,025 | .027 | 1,8+20 | ŀ | 8.7-04 | 3.50 | 5.8-01 | | 1936 | 463.0 | 2.58-03 | 4.73-07 | 1055. | 0 0 E | 0.00 | .027 | 1.6+20 | | 1.1-03 | 3,40 | 7.3-01 | | 1969 | - tst | 2.26-03 | 4.16-07 | 1045. | 8 4-02 | 0.25 | .027 | 1.3+20 | | 1,2-63 | ان
دون
دون | 8.2-01 | | 2003 | 4 500 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 1.74-03 | 3.26-07 | 1035. | 8.4 | 10 0 v | .026 | 1.1+20 | | 1.6-03 | า
กูก
เก | 1,0+01 | | .2067 | 46104 | 1.51-03 | 2.88-07 | 1030. | 8,4-02 | .024 | .026 | 8,7+19 | 1 | 1.8-03 | 3,31 | 1.2+00 | | 2133 | 0 0 0
0 0
0 0
0 0
0 0
0 0 | 1.15-03 | 2.23-07 | 1020. | 9.6 | 0.54 | .025 | 6.8+19 | | 2.3-03 |

 | 1.5+00 | | ,2165 | 0.823 | 99.98-04 | 1.96-07 | 1014. | 8.4-02 | 023 | .025 | 5.9+19 | | 2.7-03 | 3.22 | 1.6+00 | | .2231 | 423 | 7.51-04 | 1.50-07 | 1004. | 8.4.02 | 023 | .025 | 4.6+19 | | 3.5-03 | 3.16
3.16 | 2.1+00 | | ,2264 | 414.7 | 6.50-04 | 1.32-07 | 966 | 8.4-02 | .023 | .024 | 4.0+19 | | 4,0-03 | 3,13 | 2,4+00 | | .2330 | 8 . CO | 4.85-04 | 1.00-07 | 988• | 8.4-02 | 022 | .024 | 3.0+19 | | 5.2-03 | 60 i | 3.1+00 | | 2362 | 401.04 | 40-04 | 8.73-08
7.47-08 | 982 | 0 . c | 220 | .021 | 7.00+13.0 | | 7.0-03 | | 4.1+00 | | 2428 | 9 | 3,10-04 | 6.40-08 | 989. | 8.4-02 | 022 | .021 | 1,9+19 | - 1 | 8,1-03 | 3.08 | 4.8+00 | | .2461 | 409.5 | 2,68-04 | 5.49-08 | 992 | 8,4+02 | , 022
222
420 | .021 | 1.7+19 | | 9.5-03 | 3,10 | 5.7+00 | | .2526 | 1 0 0 1 1 1 1 1 | 2.00-04 | 4.05-08 | •666 | 8.3-02 | 023 | .022 | 1.2+19 | | 1.3-02 | 3,13 | 7.8+00 | | , 2559
9 | 417.6 | 1.73-04 | 3.48-08 | 1002. | 8,3-02 | 023 | .022 | 1.1419 | | 1.5-02 | 3,15 | 9.1+00 | | 250
2625
2625 | 200 | 1,30-04 | 2.58-08 | 1008. | 8.3-02 | 023 | .022 | 7.8+18 | | 2.0-02 | 3,19 | 1,2+01 | | .2658 | £24.8 | 1,13-04 | 2.23-08 | 1011. | 8.3-02 | ,023 | ,023 | 6.8+18 | | 2.3-02 | 3.20 | 1.4+01 | | 2690 | 4.26.6 | 9.81-05 | 1.93-08 | 1013. | 8.3-02 | 023 | . 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 5,9+18 | | 3.1-02 | 3.21 | 1.7+01 | | ,2756 | 400 | 7,42-05 | 1.45-08 | 1017. | 8.3-02 | 024 | .023 | 4.4+18 | | 3.6-02 | 3.24 | 2.2+01 | | . 2789
2822 | 432.0 | 6.46-05
5.43-05 | 1.25-08 | 1019. | 8°3-02 | 0
0
0
0
0
0 | .020 | 3,6413 | | 4.2-02 | 3. 5.
5. 5.
5. 5. 5. | 2.6+01 | | 2854 | 416.2 | 4.87-05 | 9.82-09 | 1001. | 8,3-02 | .023 | .026 | 3.0+18 | į. | 5.3-02 | 3.14 | 3.2+01 | | .2920 | 4.00
4.00
4.00
4.00 | 3.63-05 | 8.65-09 | 991. | 8.3-02
0-10-02 | 0.022 | ,026
,025 | 2.6+18 | 1336.
1323. | 6.0-02
6.8-02 | ъ
0
0
0
0 | 3.6+01 | | .2953 | 3.26 | 3,12-05 | 60-89-9 | 972. | 8,3-02 | .022 | .025 | 2,0+18 | - | 7.8-02 | 00.0 | 4 5 5 + 0 1 | | 4.2946 | 0,040 | 30404 6 | | | | | | | | 3 | | | TABLE II. - MODEL ATMOSPHERE FOR EARTH -- 30 WINTER DATA - Concluded (b) Engineering units - Concluded | ¥. | 100 | 25 | 2 5 | 20 | 2 S | 200 | 25 | 200 | 200 | , S | -02 | ن
ان ان | 5 6 | 5 | 5 | 3 5 | .03 | ខ្លួ | 50 |--|------------------|------------------|---------|---------|---------|---------|---------|---------|----------------------|---------|---------|---|---------|---------|----------|---------|---------|--------------------|---------|-------|-------|-------|-----------------|-------|------|------|------|-------|-------|------|-------|------|------|-------------|------|-------|------|------|------|------| | KINETIC | 6.9+01 | 9°4 | FO F | 1.8 | 200 | , r. | m° = | ้น | 6.14 | 8.67 | 9.5 | , , , , , , , , , , , , , , , , , , , | 1.64 | 6.0 | | ง
พ | 'n, | 4.1+03 | 5.44 | 0,0 | 90 | 0.0 | 00 | 0.0 | 0 0 | 0.0 | 00 | 0.0 | 0 0 | 0 | 0.0 | 0 | 0.0 | ٥
٥
٥ | 90 | 0.0 | 0 0 | 0.0 | 0.0 | 00 | | VIS-
COSITY
(E+5) | 2.94 | 2,91
2,93 | 2,94 | 2.98 | 3.00 | 3,11 | 3,16 | 3.27 | 3.00 | , i. | 3,38 | 4 ° 4 | 3,59 | 69. | 3,78 | 4 ° 6 | 4°03 | 4,16
4,22 | 4.29 | 00. | 000 | 000 | 900 | 00° | 9.5 | 00. | 85 | 00. | 000 | 00. | 9 | 00. | 00. | င့်
င | 90 | 00. | 000 | | .00 | 999 | | MEAN
FREE
Path
(FT) | 1.2-01 | 1.9-01 | 2.3-01 | 3,1-01 | 3.6-01 | 5.0-01 | 5.9-01 | 8.0-01 | 9.2-01 | 1.2+00 | 1.4+00 | 1,9400 | 2,1+00 | 2,5+00 | 2.0+00 | 3.7+00 | 4.2+00 | 5.5+00 | 6.2+00 | 0.0 | 0.0 | 0.0 | ຸ
ວິດ
ວິດ | 0.0 | 000 | 0.0 | 000 | 0.0 | 000 | 0.0 | 000 | 0.0 | 0.0 | 000 | 0 | 0.0 | 0.0 | 000 | 0.0 | 000 | | MEAN
PARTICLE
VELOCITY
(FT/SEC) | 1300. | 1292.
1299. | 1306. | 1320 | 1327. | 1359. | 1374. | 1405 | 1413, | 1429 | 1437. | 1445 | 1488 | 1510. | 1551 | 1577. | 1602. | 1626. | 1673. | å | ီဝီ | 0 | °° | 0. | • • | | ő | 0 | ဝီင် | å | ô | 00 | ċ | • | ံဝံ | • | ő | | ô | • • | | ME
NUMBER PA
E DENSITY VE
(PER CU FT) (| 1.3+18 | 9.7+17 | 7.0+17 | 5.1+17 | 4.4417 | 3.1+17 | 2.7+17 | 2.0+17 | 1.7+17 | 1.3+17 | 1-1+17 | 9,9+16 | 7.4+16 | 6.4+16 | 0.0 | 4.2+16 | 3.7+16 | 3.3+16 | 2.6+16 | 0.0 | | 0.0 | 000 | 0.0 | 000 | 0.0 | 00 | 0.0 | 0.0 | 0.0 |
0.0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 000 | | DENS
SCALE
FT) (1 | .022 | .020 | .020 | .021 | .021 | .020 | •020 | .021 | .023 | ,024 | • 024 | .024 | .022 | .023 | 100 | .024 | 025 | .026
.026 | .027 | 0000 | 000 | 000 | 000 | 000 | | 000 | 0000 | 000 | 000 | 0000 | 000 | 000 | 000 | 000 | | 000 | 0000 | 000 | 000 | 0000 | | PRES DENS
SCALE SCALE
(MIL.FT) (1 | .021
.021 | 021 | 021 | 0.52 | 250 | 023 | .024 | 025 | 0.05
0.05
0.05 | 026 | .026 | 026 | .028 | 620 | 0.00 | 031 | .032 | 033 | .035 | 000 | 000 | 000 | 900 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | | SPECIFIC | 8.3-02
8.3-02 | 8.3-02
8.3-02 | 8.3-02 | 8.3-02 | 8.3-02 | 8.3-02 | 8.3-02 | 8.3-02 | 8.3-02 | 8.3-02 | 8.3-02 | 8.3-02 | 8.3-02 | 8.3-02 | 30-0-0 | 8.2-02 | 8.2-02 | 8.2-02
8.2-02 | 8.2-02 | 0.0 | 900 | 0.0 | | 0.0 | 5 C | 0.0 | 000 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0.0 | • | | 0.0 | 0.0 | 0 | 0.0 | 000 | | SPEED
OF SQUND
(FT/SEC) | 964. | 959.
964. | 969. | 979. | 984. | 1008. | 1019. | 1042 | 1048. | 1059. | 1065 | 1081. | 1104. | 1120 | 1151 | 1169. | 1187. | 1205.
1223. | 1240. | ô | | • | •• | •0 | 50 | | åc | ° | oc | | å | 0 | ô | . | ٥٥ | ° | • 6 | | اه | • • | | DENSITY
(SLUG/
CU FT) | 4.28-09 | 3.17-09 | 2.28-09 | 1.65-09 | 1.41-09 | 1.01-09 | 8.56-10 | 6.25-10 | 5.42-10 | 4.10-10 | 3.57-10 | 2.67-10 | 2.30-10 | 2.00-10 | 10.3-10 | 1.32-10 | 1.15-10 | 1.01-10
8.93-11 | 7.91-11 | 00.0 | 00.00 | 0.00 | 000 | 00.0 | 0.00 | 0.00 | 000 | 00.00 | 00.0 | 0.00 | 00.00 | 0.00 | 0.00 | 000 | 000 | 0.00 | 0000 | 00.0 | 0.00 | 0.00 | | PRESSURE | 1.69-05 | 1,44-05 | 1.06-05 | 7.84-06 | 6.76-06 | 5.06-06 | 90-04.4 | 3.36-06 | 2.55-06 | 2.28-06 | 2,01-06 | 1.57-06 | 1.39-06 | 1.24=06 | 00-11-10 | 8.93-07 | 8.06-07 | 7,30-07
6,63-07 | 6.03-07 | 000 | 00.0 | 0.00 | 000 | 0.00 | 0.00 | 000 | 000 | 0.00 | 00.00 | 0.00 | 000 | 0000 | 0.00 | 900 | 000 | 0.00 | 0.00 | 00.0 | 0.00 | 00.0 | | T _{CAP} | 384.8 | 379.8 | 385.6 | 391.3 | 394.02 | 410.8 | 419.0 | 0.00 | 43.9°6 | 47.00 | 421.4 | a
Sun
Sun
Sun
Sun
Sun
Sun
Sun
Sun
Sun
Sun | 481.3 | 100 | 2006 | 536.1 | 552.1 | 568°0
583°0 | 599.8 | 0,0 | | 0 | | o. | 0.0 | ç | óċ | o | å | å | ô | 90 | Q. | å | åå | ô | 9 9 | å | ÷ | ôô | | reight
(Mil.ft) | .3051 | .3117 | 3215 | .3248 | 3281 | .3347 | .3379 | 3,44 | 3478 | . 55 C | ,3576 | 3603 | .3675 | .3708 | 3774 | 3806 | .3839 | .3872
.3904 | .3937 | 00000 | 0000 | 0000° | 900 | 0000° | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000° | 0000 | 0000 | 0000 | 0000 | | | | | | | | | | | | | | | | | | į | | i
! | | | | } | | | | | | | 1 | į | | | | | | | | | | |